
Last lecture (7) 
• Particle motion in magnetosphere 

• Aurora 

Today’s lecture (8) 
• Aurora on other planets 

• How to measure currents in space 

• Magnetospheric dynamics 
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EF2240 Space Physics 2014 

Activity Date Time Room Subject Litterature 

L1 2/9 10-12 Q33 Course description, Introduction, The Sun 1, 
Plasma physics 1 

CGF Ch 1, 5, (p 110-
113) 

L2 4/9 10-12 Q21 The Sun 2, Plasma physics 2  CGF Ch 5 (p 114-121), 
6.3 

L3 8/9 13-15 Q36 Solar wind, The ionosphere and atmosphere 
1, Plasma physics 3 

CGF  Ch 6.1, 2.1-2.6, 
3.1-3.2, 3.5,   LL Ch 
III, Extra material 

T1 10/9 10-12 Q33 Mini-group work 1   
L4 15/9 13-15 Q31 The ionosphere 2, Plasma physics 4 CGF Ch 3.4, 3.7, 3.8  
T2 17/9 10-12 Q33 Mini-group work 2   
L5 19/9 15-17 Q31 The Earth’s magnetosphere 1, Plasma 

physics 5 
CGF 4.1-4.3, LL Ch I, 
II, IV.A 

L6 23/9 8-10 Q31 The Earth’s magnetosphere 2, Other 
magnetospheres 

CGF Ch 4.6-4.9, LL 
Ch V. 

T3 24/9 14-16 Q21 Mini-group work 3   
L7 29/9 11-13 Q36 Aurora, Measurement methods in space 

plasmas and data analysis 1 
CGF Ch 4.5, 10, LL 
Ch VI, Extra material 

T4 1/10 15-17 Q31 Mini-group work 4   
L8 2/10 15-17 Q34 Space weather and geomagnetic storms CGF Ch 4.4, LL Ch 

IV.B-C, VII.A-C 
L9 8/10 13-15 Q36 Interstellar and intergalactic plasma, 

Cosmic radiation, Swedish and international 
space physics research. 

CGF Ch 7-9 

T5 9/10 15-17 Q31 Mini-group work 5   
L10 13/10 15-17 Q33 Guest lecture (preliminary): Swedish 

astronaut Christer Fuglesang 
  

T6 16/10 10-12 Q36 Round-up   
Written exami-
nation 

30/10 8-13 M33, 
M37, 
M38 
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Assuming the solar wind consists of protons 
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Thus 
 
r = 2.7·109 m ≈ 38 RJ 
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Mini-groupwork 4 
b) 

Substitute x = 1/r3. This gives you an equation on 
the form 

 

ax2 + bx + c = 0 

 

with 
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From this you get   r ≈ 73 RJ 
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Magnetic mirror 

The magnetic moment µ is an 
adiabatic invariant.  

B
mv
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mv2/2 constant (energy conservation) 
2sin konst

B
α
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particle turns when α = 90°  

lcα α<Particles in    
loss cone : 

maxarcsin /lc B Bα α> =

If maximal B-field is Bmax a particle 
with pitch angle α can only be turned 
around if  

2
max/ sinturnB B Bα= ≤
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Magnetic mirror 
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Ring current and particle motion 
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Radiation belts 

I. Van Allen belts 
 

• Discovered in the 50s , 
Explorer 1 

• Inner belt contains 
protons with energies 
of ~30 MeV 

• Outer belt (Explorer IV, 
Pioneer III): electrons, 
W >1.5 MeV 
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CRAND (Cosmic Ray Albedo Neutron Decay 

Secondary 
radiation 

Collisions between cosmic ray 
particles and the Earth create 
new particles. Among these are 
neutrons, that are not affected 
by the magnetic field. They 
decay, soom eof them when 
they happen to be in the 
radiation belts. The resulting 
protons and electrons are 
trapped in the radiation belts. 

This contribution to the radiation 
belts are called the neutron 
albedo. 

Figure 8. An illustration of the CRAND process for populating the 
inner radiation belts [Hess, 1968]. 
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Magnetospheric structure 
polar plumes = tail lobe 
ne ~ 0,01 cm-3, Te ~ 106 K 

plasmasphere: 
 ne ~ 10-100 cm-3, Te ~ 1000 K 

plasma sheet: 
 ne ~ 1 cm-3, Te ~ 107 K 

plasma mantle 
ne ~ 0,1-1 cm-3, Te ~ 106 K 

magnetosheath: 
 ne ~ 5 cm-3, Te ~ 106 K 
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Planetary magnetospheres 

< 0.03 

0.065 

Very weak magnetic 
fields 
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Relative size of the magnetospheres 
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Comparative magnetospheres 
Observed vs. theoretical standoff-distance  
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• Model reasonably valid over three orders of 
magnitude 

• Size of Jupiter’s (and maybe Saturn’s) 
magnetosphere underestimated  
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The aurora 
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The aurora 
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The aurora 
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The aurora 
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Homogenous auroral arcs 
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Rays, curtains 

Rays are formed in the direction 
of the local magnetic field. 

Drapes develop from homogenous 
arcs, often when they increase in 
intensity. 
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Auroral spirals 

Develop when arcs become unstable 
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Auroral corona 
Geometric effect of 
perspective when you look 
towards magnetic zenith. 
Compare the figure.  
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http://antwrp.gsfc.nasa.gov/apod/image/0201/aurora_clausen.jpg


Aurora - altitude 

Foto from International Space Station 

~100 km 
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http://antwrp.gsfc.nasa.gov/apod/image/0304/spaceaurora_iss_big.jpg


Early notions 

Anders Celsius documented 
that compass needles where 
strongly affected during auroral 
activity in 1733. 

Woodcut from Böhmen 1570. 
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What causes the aurora? 
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Particle motion in geomagnetic field  

gyration 

Magnetic mirror 
grad B drift 

longitudinal oscillation 

azimuthal drift 
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Magnetic mirror 

The magnetic moment µ is an 
adiabatic invariant.  

B
mv

B
mv

2
sin

2

222 αµ == ⊥

mv2/2 constant (energy conservation) 
2sin konst

B
α

=

2/ sinturnB B α=

particle turns when α = 90°  

lcα α<Particles in    
loss cone : 

maxarcsin /lc B Bα α> =

If maximal B-field is Bmax a particle 
with pitch angle α can only be turned 
around if  
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Collisions - emissions 
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Emissions 
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Oxygen emissions 
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Why is there no red emissions 
at lower altitude? 
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Oxygen emissions 

The red emission line is suppressed 
by collisions at lower altitudes due 
the its long transition time. (When 
an excited atom collides with 
another atom, is is de-excited 
without any emission.) 
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Larger scales 

Foto från DMSP-satelliten 

Single arcs ~10 – 100 km 

Whole auroral zone ~ 500 
km 
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Auroral ovals 

Dynamics Explorer 
Polar 
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The auroral oval is the projection of the 
plasmasheet onto the atmosphere 

Mystery! 

The particles in 
the plasmasheet 
do not have high 
enough energy to 
create aurora 
visible to the eye. 
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Magnetic mirror 

The magnetic moment µ is an 
adiabatic invariant.  
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Why particle acceleration? 
• The magnetosphere often 

seems to act as a current 
generator.  

• The lower down you are 
on the field line, the more 
particles have been 
reflected by the magnetic 
mirror.  

• At low altitudes there are 
not enough electrons to 
carry the current. 
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Why  particle acceleration? 

• Electrons are accelerated 
downwards by upward E-
field. 

• This increases the pitch-angle 
of the electrons, and more 
electrons can reach the 
ionosphere, where the current 
can be closed.  

j 
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Distribution function 

Example: 
Maxwellian 
distribution 
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Why  particle acceleration? 

• Electrons are accelerated downwards by upward E-field. 

• This increases the pitch-angle of the electrons, and more electrons 
can reach the ionosphere, where the current can be closed.  
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Satellite signatures of U potential 

B 

E 

Measurements made by the ISEE satellite 
(Mozer et al., 1977) 
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Acceleration regions 

, including auroral acceleration 

Auroral acceleration region typically situated at altitude of 1-3 RE 

EF2240 Space Physics 2014 



Auroral spirals 

Develop when arcs become unstable 
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Kelvin-Helmholz-
instability – a general 
phenomenon 

 

 
 

 

Extragalactic jet (M87) Cluds 

Aero- and fluid dynamics 
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http://heritage.stsci.edu/2000/20/big.html


Kelvin-Helmholz instability 
Example: water waves 

water 

wind A1 

A2 

Bernoulli’s equation: 
2 2

1 1 2 2 .p v p v constρ ρ+ = + =
Continuity equation: 

1 1 2 2A v A v=

p 

1 2p p p> >

p1 

p2 
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Spirals – Kelvin-Helmholz 
instability 

Auroral arc 

B 

E 

E 
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Satellite signatures of U potential 

B 

E 

Measurements made by the ISEE satellite 
(Mozer et al., 1977) 
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Spirals – Kelvin-Helmholz 
instability 

Auroral arc 

B 

E 

E 

v = E x B 

v = E x B 

Opposite flows trigger the 
K-H instability 
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Birkeland currents in the auroral oval 
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How can you measure 
currents in space? 
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Current sheet approximation 

Approximate currents by thin 
current sheets with infinite  size in 
the x- och z-directions. 

j 

z 
y 

x 
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Current sheet approximation 

j 

B 

j 

B 

What will the magnetic field around such a current configuration be? Start 
by approximating with line currents to get a qualitative picture. 

The closer you place the line currents, the more the magnetic 
fields between the line currents will cancel 
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Current sheet approximation and 
Ampére’s law 

Ampére’s law (no time dependence): 
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Current sheet - example 
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BEast 

 
BSouth 

1 2 
 

3 4 

y
B

j x
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∂
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µ

What is the direction of the current in current sheet 1? 

Into the ionosphere 

Out of the ionosphere Red 

Blue 
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Birkeland currents in the auroral oval 
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At what planets do you expect  
aurora to exist? 

Green 

Yellow 

Red 

Blue Earth, Mercury, 
Jupiter, Saturn 

Earth, Mars, Jupiter, 
Saturn, Uranus, 

Neptune 

Earth, Venus, Jupiter, 
Saturn, Uranus, 

Neptune 

Earth, Jupiter, Saturn, 
Uranus, Neptune 
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What do we need to have an aurora? 

• Magnetic field (to guide the plasma 
particles towards the planet) 

• Atmosphere (to create emissions) 
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At what planets do you  
expect aurora to exist? 

Red Earth, Jupiter, Saturn, 
Uranus, Neptune 
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Mercury 

• No atmosphere 

• X-ray aurora??? 
Can possibly be created by 
electrons colliding directly 
with the planetary surface 
and lose their energy in one 
single collision. 

EF2240 Space Physics 2014 



Jupiter aurora 

Foto från Hubble Space Telescope 

• Jupiter’s aurora has a power of 
~1000 TW (compare Earth: ~100 
GW, nuclear power plant: ~1 GW) 

• Note the “extra” oval on Io’s flux 
tube! 
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Jupiter and Io 

The Jupiter moon Io is very volcanically active, and deposes large amounts of 
dust and gas in Jupiter’s magnetosphere. This is ionized by the sunlight, and the 
charged plasma partícles follow Jupiter’s magnetic field lines towards the 
atmosphere and cause auroral emissions.  
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Aurora of the other planets 

Saturnus’ aurora: not noticeably different 
from Jupiter’s, but much weaker. (Total 
power about the same as Earth’s aurora.) 

Saturn 
Uranus: Auora detected in UV. 
Probably associated with Uranus’ ring 
current/radiotion belts and not very 
dynamic. 

Neptunus: weak UV aurora detected. 

Mars, Venus: No aurora. 
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Prerequisites for… 

Life 
• Energy source (sun) 
• Atmosphere 
• Magnetic field 
• Water 

Aurora 
• Energy source (sun) 
• Atmosphere 
• Magnetic field 
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On space weather and 
viewing aurora 
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Some space weather sites 
 

http://spaceweather.com/ 
 
http://www.esa-spaceweather.net/ 
 
http://sunearthday.nasa.gov/swac/ 
 
http://www.noaawatch.gov/themes/spac
e.php 
 
http://www.windows2universe.org/spac
eweather/more_details.html 
 

Kiruna 
 

Kiruna all-sky camera: 
http://www.irf.se/allsky/rtasc.php 
 

http://sunearthday.nasa.gov/swac/
tutorials/aur_kiruna.php 
 
Forecasts: 
http://flare.lund.irf.se/rwc/aurora/ 
 

http://www.irf.se/Observatory/?li
nk[All-
skycamera]=Aurora_sp_statistics 



Magnetic reconnection 
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Magnetic reconnection 
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Frozen in magnetic field lines 

This applies if the  magnetic Reynolds 
number is large: 

0 1m c cR l vµ σ= >>

An example of the 
collective behaviour 
of plasmas. 

In fluid description of 
plasma two plasma 
elements that are 
connected by a 
common magnetic 
field line at time t1 will 
be so at any other 
time t2 . 
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X Magnetic reconnection 
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Reconnection 

• Field lines are “cut” and can be re-
connected to other field lines 

• Magnetic energy is transformed 
into kinetic energy (Uo >> Ui) 

• Plasma from different field 
lines can mix 

In ‘diffusion region’: 

Rm = µ0σlv ~1 
 

Thus: condition for 
frozen-in magnetic field 
breaks down. 

A second condition is 
that there are two 
regions of magnetic 
field pointing in 
opposite direction: 
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Reconnection and plasma convection 

Solar wind 
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Reconnection och plasma convection 

• Reconnection on the dayside 
“re-connects” the solar wind 
magnetic field and the 
geomagnetic field 

• In this way the plasma 
convection in the outer 
magnetosphere is driven 

• In the night side a second 
reconnection region drives 
the convection in the inner 
magnetosphere.  
The reconnection also heats 
the plasmasheet plasma.  
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What happens if IMF is northward instead? 
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Magnetospheric dynamics 

open magnetosphere closed magnetosphere 

Interplanetary 
magnetic field (IMF) 

northward southward 
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Magnetospheric dynamics 
open magnetosphere 

Southward  
IMF 
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Magnetospheric topology 

Open field lines 

Closed field lines 
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Reconnection 

• Field lines are “cut” and can be re-
connected to other field lines 

• Magnetic energy is transformed 
into kinetic energy (Uo >> Ui) 

• Plasma from different field 
lines can mix 

In ‘diffusion region’: 

Rm = µ0σlv ~1 
 

Thus: condition for 
frozen-in magnetic field 
breaks down. 

A second condition is 
that there are two 
regions of magnetic 
field pointing in 
opposite direction: 
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Reconnection and plasma convection 

Solar wind 
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Reconnection och plasma convection 

• Reconnection on the dayside 
“re-connects” the solar wind 
magnetic field and the 
geomagnetic field 

• In this way the plasma 
convection in the outer 
magnetosphere is driven 

• In the night side a second 
reconnection region drives 
the convection in the inner 
magnetosphere.  
The reconnection also heats 
the plasmasheet plasma.  
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Field transformations (relativistic) 

Relativistic transformations 
(perpendicular to the velocity u): 

x 

y 

S 
x’ 
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electric field 
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Magnetospheric dynamics 

The solar wind generates 
an electric field 

ESW = - vSW × BSW 
 
which maps down to the 
ionosphere, since the field 
lines are very good 
conductors 

 

open magnetosphere 

Viewpoint 1 

EF2240 Space Physics 2014 



Magnetospheric dynamics 

The solar wind magnetic 
field draws the ionospheric 
plasma with it, since the 
field is frozen into the 
plasma. This motion 
induces an ionospheric 
electric field 

EI = - vI × BI 

open magnetosphere 
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Viewpoint 2 



Magnetospheric dynamics 

The electric field 
”propagates” to the 
ionosphere, since the field 
lines are good conductors, 
and thus equipotentials 

Plasma convection in the ionosphere 
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Do you recognize this 
pattern? 

Plasma convection in the ionosphere 
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Do you recognize this 
pattern? 

Plasma convection in the ionosphere 

80º 

70º 

60º 

24 

06 18 

E = 32 mV/m 
B = 53 000 nT 

12 
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Static, large-scale  MI-coupling  
Magnetospheric and ionospheric convection 

Kelley, 1989 

Ionospheric convection 
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Magnetospheric plasma convection 

EF2240 Space Physics 2014 



EF2240 Space Physics 2014 

Measurements of plasma convection in the magnetosphere 



Last Minute! 
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Last Minute! 
 

 
• What was the most important thing of today’s lecture? Why? 

 
• What was the most unclear or difficult thing of today’s lecture, 

and why? 
 

• Other comments 
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