

Last lecture (7)

- Particle motion in magnetosphere
- Aurora

Today's lecture (8)

- Aurora on other planets
- How to measure currents in space
- Magnetospheric dynamics

<u>Activity</u>	Date	<u>Time</u>	Room	<u>Subject</u>	Litterature
L1	2/9	10-12	Q33	Course description, Introduction, The Sun 1, Plasma physics 1	CGF Ch 1, 5, (p 110- 113)
L2	4/9	10-12	Q21	The Sun 2, Plasma physics 2	CGF Ch 5 (p 114-121), 6.3
L3	8/9	13-15	Q36	Solar wind, The ionosphere and atmosphere 1, Plasma physics 3	CGF Ch 6.1, 2.1-2.6, 3.1-3.2, 3.5, LL Ch III, Extra material
T1	10/9	10-12	Q33	Mini-group work 1	
L4	15/9	13-15	Q31	The ionosphere 2, Plasma physics 4	CGF Ch 3.4, 3.7, 3.8
T2	17/9	10-12	Q33	Mini-group work 2	
L5	19/9	15-17	Q31	The Earth's magnetosphere 1, Plasma physics 5	CGF 4.1-4.3, LL Ch I, II, IV.A
L6	23/9	8-10	Q31	The Earth's magnetosphere 2, Other magnetospheres	CGF Ch 4.6-4.9, LL Ch V.
T3	24/9	14-16	Q21	Mini-group work 3	
L7	29/9	11-13	Q36	Aurora, Measurement methods in space plasmas and data analysis 1	CGF Ch 4.5, 10 , LL Ch VI, Extra material
T4	1/10	15-17	Q31	Mini-group work 4	
L8	2/10	15-17	Q34	Space weather and geomagnetic storms	CGF Ch 4.4, LL Ch IV.B-C, VII.A-C
L9	8/10	13-15	Q36	Interstellar and intergalactic plasma, Cosmic radiation, Swedish and international space physics research.	CGF Ch 7-9
T5	9/10	15-17	Q31	Mini-group work 5	
L10	13/10	15-17	Q33	Guest lecture (preliminary): Swedish astronaut Christer Fuglesang	
T6	16/10	10-12	Q36	Round-up	
Written exami- nation	30/10	8-13	M33, M37, M38		

Today

Mini-groupwork 4

a)

$$\rho_{SW} v_{SW}^2 = \left[\frac{\mu_0 a}{4\pi} \frac{1}{r^3}\right]^2 / 2\mu_0 \quad \Longrightarrow$$

$$r = \left(\frac{\mu_0 a}{4\pi}\right)^{1/3} \left(2\mu_0 \rho_{SW} v_{SW}^2\right)^{-1/6}$$

Assuming the solar wind consists of protons

$$\rho_{SW} = n_{e,SW} m_p = 1.7 \cdot 10^{-22} \ kg \ m^{-3}$$

Thus

 $r = 2.7 \cdot 10^9 \text{ m} \approx 38 \text{ R}_{\text{J}}$

Mini-groupwork 4

$$\rho_{SW} v_{SW}^{2} = \left[\frac{\mu_{0} a}{4\pi} \frac{1}{r^{3}}\right]^{2} / 2\mu_{0} + 2n_{e} k_{B} T \implies$$

$$\rho_{SW} v_{SW}^{2} = \left[\frac{\mu_{0} a}{4\pi} \frac{1}{r^{3}}\right]^{2} / 2\mu_{0} + 2n_{e0} \left(\frac{R_{J}}{r}\right)^{3} k_{B} T$$

Substitute $x = 1/r^3$. This gives you an equation on the form

 $ax^2 + bx + c = 0$

with

$$a = \left[\frac{\mu_0 a}{4\pi}\right]^2 / 2\mu_0 = 1.02 \cdot 10^{46}$$

$$b = 2n_{e0}R_J^3k_BT = 3.6 \times 10^{18}$$

$$c = -\rho_{SW} v_{SW}^2 = -2.7 \cdot 10^{-11}$$

$$x = \frac{-b}{2a} \pm \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}} = -1.8 \cdot 10^{-28} + \sqrt{3.24 \cdot 10^{-56} + 2.635 \cdot 10^{-57}} =$$
$$= -1.8 \cdot 10^{-28} + 1.87 \cdot 10^{-28} = 7.18 \cdot 10^{-30}$$

From this you get $r \approx 73 \text{ R}_{\text{J}}$

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

mv²/2 constant (energy conservation) $\frac{\sin^2 \alpha}{B} = konst$ particle turns when $\alpha = 90^\circ$ $B_{turn} = B / \sin^2 \alpha$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{max} \implies$$
$$\alpha > \alpha_{lc} = \arcsin \sqrt{B / B_{max}}$$

Particles in *loss cone* :

$$\alpha < \alpha_{lc}$$

Magnetic mirror

Ring current and particle motion

$$\mathbf{u} = -\frac{\mu \nabla B \times \mathbf{B}}{qB^2}$$

Radiation belts

I. Van Allen belts

- Discovered in the 50s , Explorer 1
- Inner belt contains protons with energies of ~30 MeV
- Outer belt (Explorer IV, Pioneer III): electrons, W>1.5 MeV

CRAND (Cosmic Ray Albedo Neutron Decay

Figure 8. An illustration of the CRAND process for populating the inner radiation belts [Hess, 1968].

Collisions between cosmic ray particles and the Earth create new particles. Among these are neutrons, that are not affected by the magnetic field. They decay, soom eof them when they happen to be in the radiation belts. The resulting protons and electrons are trapped in the radiation belts.

This contribution to the radiation belts are called the *neutron albedo*.

Magnetospheric structure

Planetary magnetospheres

	Radius Earth radii	Spin period (days)	Equatorial field strength (μT)	Magnetic axis direction relative to spin axis	Polarity relative to Earth´s	Typical magneto- pause distance (planetary radii)				
Mercury	0.38	58.6	0.35	10 ⁰	Same	1.1				
Venus	0.95	243	< 0.03	-	-	1.1				
Earth	1.0	1	31	11.5 ⁰	Same	10				
Mars	0.53	1.02	0.065		Opposite	?				
Jupiter	11.18	0.41	410	10 ⁰	Opposite	60-100				
Saturn	9.42	0.44	40	<1 ⁰	`````Opposi te	20-25				
Uranus	3.84	0.72	23	60 ⁰	Opposite	18-25				
Neptune	3.93	0.74	20-150 ^{*)}	47 ⁰	Opposite	26 ^{**)}				

*) The magnetic field differs greatly from a dipole field. The numbers represent maximum and minimum strength at the planetary surface

**) Based on single passage

Very weak magnetic fields

Relative size of the magnetospheres

Comparative magnetospheres

Observed vs. theoretical standoff-distance

The aurora

The aurora

The aurora

Homogenous auroral arcs

Rays, curtains

Rays are formed in the direction of the local magnetic field.

Drapes develop from homogenous arcs, often when they increase in intensity.

Auroral spirals

Develop when arcs become unstable

Auroral corona

Geometric effect of perspective when you look towards magnetic zenith. Compare the figure.

Aurora - altitude

Foto from International Space Station

EF2240 Space Physics 2014

Early notions

Woodcut from Böhmen 1570.

Anders Celsius documented that compass needles where strongly affected during auroral activity in 1733.

What causes the aurora?

EF2240 Space Physics 2014

Particle motion in geomagnetic field

longitudinal oscillation

gyration

azimuthal drift

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

mv²/2 constant (energy conservation) $\frac{\sin^2 \alpha}{B} = konst$ particle turns when $\alpha = 90^\circ$ $B_{turn} = B / \sin^2 \alpha$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{\max}$$

$$\alpha > \alpha_{lc} = \arcsin \sqrt{B} / B_{max}$$

Particles in *loss cone* :

$$\alpha < \alpha_{lc}$$

Collisions - emissions

Emissions

Oxygen emissions

Why is there no red emissions at lower altitude?

Oxygen emissions

The red emission line is suppressed by collisions at lower altitudes due the its long transition time. (When an excited atom collides with another atom, is is de-excited without any emission.)

Larger scales

Foto från DMSP-satelliten

Auroral ovals

Dynamics Explorer

Polar

The auroral oval is the projection of the plasmasheet onto the atmosphere

Mystery!

The particles in the plasmasheet do not have high enough energy to create aurora visible to the eye.

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

 $mv^2/2$ constant (energy conservation)

 $\frac{\sin^2 \alpha}{B} = konst$

particle turns when $\alpha = 90^{\circ}$

$$B_{turn} = B / \sin^2 \alpha$$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{\max} \quad \Longrightarrow$$

$$\alpha > \alpha_{fl} = \arcsin \sqrt{B / B_{max}}$$

Particles in *loss cone* :

$$\alpha < \alpha_{_{fl}}$$

Why particle acceleration?

- The magnetosphere often seems to act as a current generator.
- The lower down you are
 on the field line, the more particles have been reflected by the magnetic mirror.
- At low altitudes there are not enough electrons to carry the current.

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Distribution function

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Acceleration regions

Auroral acceleration region typically situated at altitude of 1-3 R_E

EF2240 Space Physics 2014

Auroral spirals

Develop when arcs become unstable

Kelvin-Helmholzinstability – a general phenomenon

Extragalactic jet (M87)

Aero- and fluid dynamics

Kelvin-Helmholz instability Example: water waves

Continuity equation:

 $A_1 v_1 = A_2 v_2$

Bernoulli's equation: $p_1 + \rho v_1^2 = p_2 + \rho v_2^2 = const.$

$$\therefore p_1 > p > p_2$$

Spirals – Kelvin-Helmholz instability

Auroral arc

⟨⟩₿

EF2240 Space Physics 2014

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Spirals – Kelvin-Helmholz instability

Birkeland currents in the auroral oval

How can you measure currents in space?

Current sheet approximation

Approximate currents by thin current sheets with infinite size in the x- och z-directions.

Current sheet approximation

What will the magnetic field around such a current configuration be? Start by approximating with line currents to get a qualitative picture.

B j O O

The closer you place the line currents, the more the magnetic fields between the line currents will cancel

Current sheet approximation and Ampére's law

Ampére's law (no time dependence):

$$\nabla \times \mathbf{B} = \boldsymbol{\mu}_0 \mathbf{j}$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

Current sheet - example

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

Blue

$$j_{z} = -\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y} \qquad \frac{\partial B_{x}}{\partial y} = \frac{\partial B_{East}}{\partial y} > 0$$
$$\Rightarrow \qquad j_{z} < 0$$

Into the ionosphere

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

1)
$$\frac{\partial B_x}{\partial y} > 0 \qquad \Rightarrow \qquad j_z < 0$$
 Into the ionosphere
2) $\frac{\partial B_x}{\partial y} < 0 \qquad \Rightarrow \qquad j_z > 0$ Out of the ionosphere
3) $\frac{\partial B_x}{\partial y} > 0 \qquad \Rightarrow \qquad j_z < 0$ Into the ionosphere
4) $\frac{\partial B_x}{\partial y} < 0 \qquad \Rightarrow \qquad j_z > 0$ Out of the ionosphere

Birkeland currents in the auroral oval

At what planets do you expect aurora to exist?

Earth, Mercury, Jupiter, Saturn

Yellow

Earth, Venus, Jupiter, Saturn, Uranus, Neptune

Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Earth, Jupiter, Saturn, Uranus, Neptune

What do we need to have an aurora?

- Magnetic field (to guide the plasma particles towards the planet)
- Atmosphere (to create emissions)

At what planets do you expect aurora to exist?

Earth, Jupiter, Saturn, Uranus, Neptune

Mercury

- No atmosphere
- X-ray aurora??? Can possibly be created by electrons colliding directly with the planetary surface and lose their energy in one single collision.

Jupiter aurora

Foto från Hubble Space Telescope

- Jupiter's aurora has a power of ~1000 TW (compare Earth: ~100 GW, nuclear power plant: ~1 GW)
- Note the "extra" oval on Io's flux tube!

Jupiter and lo

The Jupiter moon Io is very volcanically active, and deposes large amounts of dust and gas in Jupiter's magnetosphere. This is ionized by the sunlight, and the charged plasma partícles follow Jupiter's magnetic field lines towards the atmosphere and cause auroral emissions.

Aurora of the other planets

Saturn

Saturnus' aurora: not noticeably different from Jupiter's, but much weaker. (Total power about the same as Earth's aurora.) Uranus: Auora detected in UV. Probably associated with Uranus' ring current/radiotion belts and not very dynamic.

Neptunus: weak UV aurora detected.

Mars, Venus: No aurora.

Prerequisites for...

Life

- Energy source (sun)
- Atmosphere
- Magnetic field
- Water

Aurora

- Energy source (sun)
- Atmosphere
- Magnetic field

On space weather and viewing aurora

Some space weather sites

http://spaceweather.com/

http://www.esa-spaceweather.net/

http://sunearthday.nasa.gov/swac/

http://www.noaawatch.gov/themes/spac e.php

http://www.windows2universe.org/spac eweather/more_details.html Kiruna

Kiruna all-sky camera: http://www.irf.se/allsky/rtasc.php

http://sunearthday.nasa.gov/swac/ tutorials/aur_kiruna.php

Forecasts: http://flare.lund.irf.se/rwc/aurora/ http://www.irf.se/Observatory/?li nk[Allskycamera]=Aurora_sp_statistics

Magnetic reconnection

Magnetic reconnection

Frozen in magnetic field lines

In fluid description of plasma two plasma elements that are connected by a common magnetic field line at time t_1 will be so at any other time t_2 .

This applies if the magnetic Reynolds number is large:

$$R_m = \mu_0 \sigma l_c v_c >> 1$$

An example of the collective behaviour of plasmas.

EF2240 Space Physics 2014

Reconnection

- Field lines are "cut" and can be reconnected to other field lines
- Magnetic energy is transformed into kinetic energy $(U_o >> U_i)$

In 'diffusion region':

 $R_m = \mu_0 \sigma lv \sim 1$

Thus: condition for frozen-in magnetic field breaks down.

A second condition is that there are two regions of magnetic field pointing in opposite direction:

• Plasma from different field lines can mix

Reconnection and plasma convection

Reconnection och plasma convection

- Reconnection on the dayside "re-connects" the solar wind magnetic field and the geomagnetic field
- In this way the plasma convection in the outer magnetosphere is driven-
- In the night side a second reconnection region drives the convection in the inner magnetosphere. The reconnection also heats the plasmasheet plasma.

What happens if IMF is northward instead?

Magnetospheric dynamics

open magnetosphere

closed magnetosphere

southward

Interplanetary magnetic field (IMF)

Magnetospheric dynamics

open magnetosphere

Magnetospheric topology

Reconnection

- Field lines are "cut" and can be reconnected to other field lines
- Magnetic energy is transformed into kinetic energy $(U_o >> U_i)$

In 'diffusion region':

 $R_m = \mu_0 \sigma lv \sim 1$

Thus: condition for frozen-in magnetic field breaks down.

A second condition is that there are two regions of magnetic field pointing in opposite direction:

• Plasma from different field lines can mix

Reconnection and plasma convection

Reconnection och plasma convection

- Reconnection on the dayside "re-connects" the solar wind magnetic field and the geomagnetic field
- In this way the plasma convection in the outer magnetosphere is driven-
- In the night side a second reconnection region drives the convection in the inner magnetosphere. The reconnection also heats the plasmasheet plasma.

Field transformations (relativistic)

Relativistic transformations (perpendicular to the velocity *u*):

$$\mathbf{E}' = \frac{\mathbf{E} + \mathbf{u} \times \mathbf{B}}{\sqrt{1 - u^2/c^2}}$$
$$\mathbf{B}' = \frac{\mathbf{B} - (\mathbf{u}/c^2) \times \mathbf{E}}{\sqrt{1 - u^2/c^2}}$$

For u << *c*:

 $\mathbf{B'} = \mathbf{B}$

Magnetospheric dynamics open magnetosphere

Viewpoint 1

The solar wind generates an electric field

$$\mathbf{E}_{\mathrm{SW}} = - \mathbf{v}_{\mathrm{SW}} \times \mathbf{B}_{\mathrm{SW}}$$

which maps down to the ionosphere, since the field lines are very good conductors

Magnetospheric dynamics open magnetosphere

Viewpoint 2

The solar wind magnetic field draws the ionospheric plasma with it, since the field is frozen into the plasma. This motion induces an ionospheric electric field

 $\mathbf{E}_{\mathrm{I}} = \textbf{-} \mathbf{v}_{\mathrm{I}} \times \mathbf{B}_{\mathrm{I}}$

Magnetospheric dynamics

Plasma convection in the ionosphere

The electric field "propagates" to the ionosphere, since the field lines are good conductors, and thus equipotentials

Do you recognize this pattern?

Plasma convection in the ionosphere

Do you recognize this pattern?

Plasma convection in the ionosphere

Static, large-scale MI-coupling

Magnetospheric and ionospheric convection

Kelley, 1989

Magnetospheric plasma convection

Measurements of plasma convection in the magnetosphere

Last Minute!

EF2240 Space Physics 2014

Last Minute!

- What was the most important thing of today's lecture? Why?
- What was the most unclear or difficult thing of today's lecture, and why?
- Other comments